
TITAN-EC test run for E1066 Proof of principle experiment for the first in-trap gamma spectroscopy

This novel in-trap concept will be used for $2v2\beta$ decay BR measurements with E1066 at ISAC

M. Brodeur, T. Brunner, S. Ettenauer, A. Lapierre, R. Ringle, P. Delheij, J.Dilling, R. Krücken, D. Frekers, I. Tanihata

UBC, TRIUMF, TU Munich, U Münster, RCNP Osaka

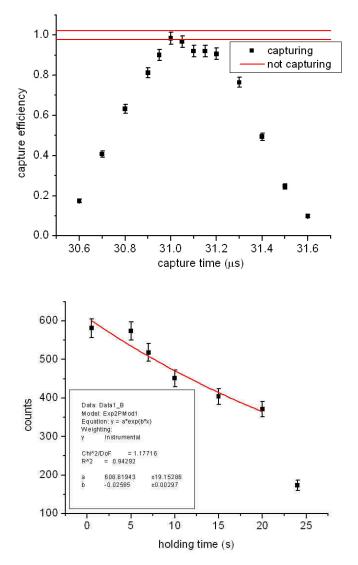
BR measurement EC to β

EC-signature: X-ray after electron capture β-signature: electrons

BUT:

small BR and difficult signature of low-energy X-ray in gamma background

possible bremsstrahlung background


isobar and decay daughter contamination

Novel concept in Penning trap detector (A (B) X-ray detector trap Storage and detection 223 mm thermal shield Penning trap 6 T magnet X-ray detector z Trapped ions Ion injection recessed Be window on DN 160 CF **Beta detector** Trapped ions vacuum flange rap electrodes ousing magnet coils Be window ⊙z **IDEA**: Load ions in trap (maybe after isobar cleaning) COU Store for long time, wait for decay X-ray isotrop, BUT electrons follow B-field (separation of decay branches) (trac After counting, remove daughter isotopes from counting environment

Proof of principal experiment

- Can we load ions in trap and store efficiently for long time?
- How many ions can we load?
- Can we put X-ray detectors near the trap (hence into the B-field)?
- Can we use beta Si(Li) detector in the Bfield?
- Can we suppress background nuclei by extracting trap content backwards?

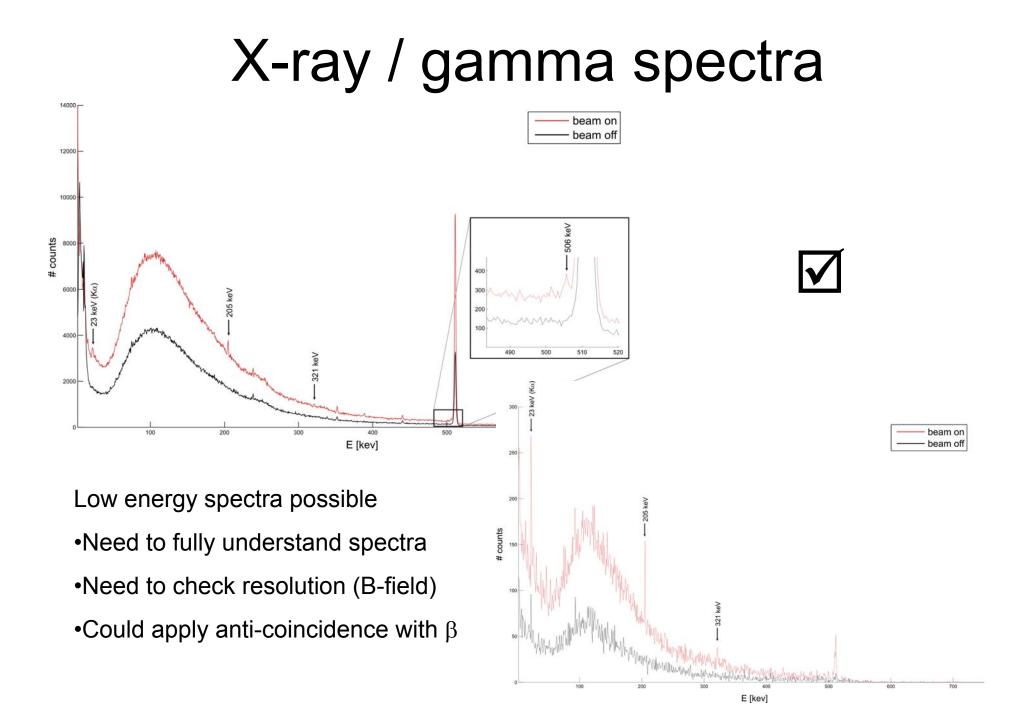
Capture/storage in the trap

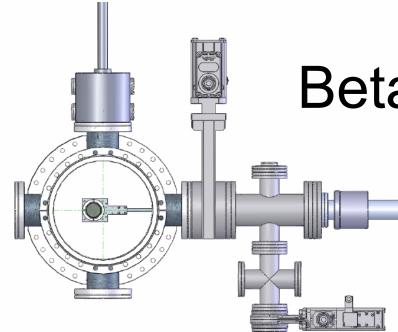
Comparing same detector (MCP behind trap) by locking at trapping and shooting through.

Look at trap content after some time, we found $\tau = 39\pm4$ s, later even ~ 90 s (better vacuum).

X-ray/gamma spectra

we used 2 Ge detectors One 20 % Ge external One LEGe in vacuum

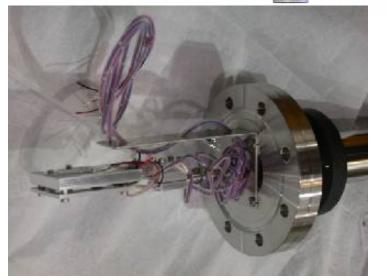

Total solid angle: 0.7%

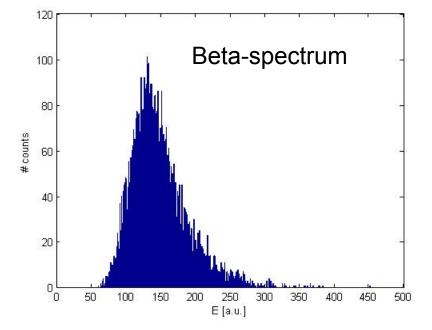

Ground and isomeric state information for $\frac{107}{49}$ In				
E(level) (MeV)	Jп	∆(MeV)	T _{1/2}	Decay Modes
0.0	9/2+	-83.5590	32.4 m <i>3</i>	ϵ : 100.00 %
0.6785	1/2-	-82.8805	50.4 s 6	IT: 100.00 %

In-107g 1.1e5/s @ 65 uA & 240 A on ionizer In-107m 1.1e3/s @ 65 uA & 240 A on ionize

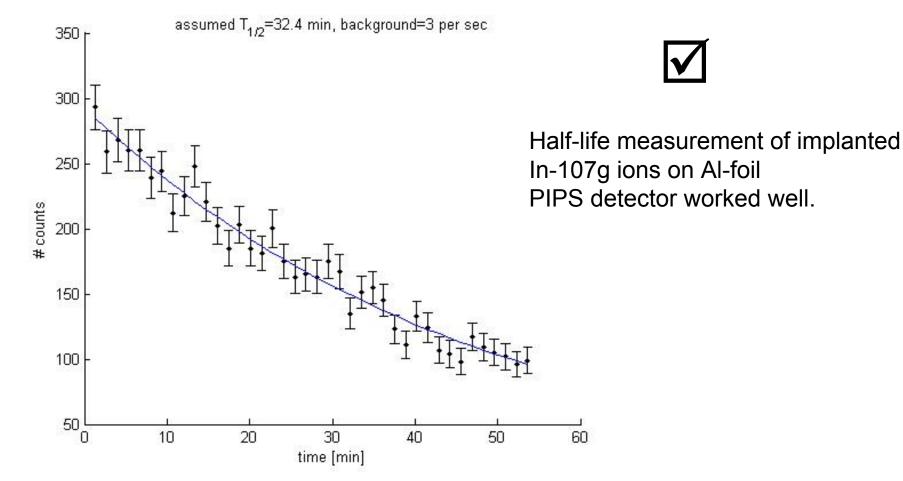
Ground state decay X-rays from EC (64%):

Energy (keV)		Intensity (%)	
XR l	3.13	3.92 % 17	
XR ka2	22.984	14.1 % 7	
XR kal	23.174	26.4 % 13	
XR kβ3	26.06	2.29 % 11	
XR kβl	26.095	4.41 % 21	
XR kβ2	26.644	1.14 % 6	


Beta spectroscopy


2 PIPS (Passive Implanted Planar Silicon)

Back-to-back with 6mm AI in between


One detector with Al in front Active Area: 300 mm² Active Thickness: 500 μm

Beta measurements

Summary

- Can we load ions in trap and store efficiently for long time? ☑
- How many ions can we load? Need to do more off-line work
- Can we put X-ray detectors near the trap (hence into the B-field)? ☑ need to check resolution.
- Can we use beta Si(Li) detector in the B-field? ☑ looks go, we did use the TIG-10 units and have the complete waveforms for off-line analysis and coincidences.
- Can we suppress background nuclei be extracting trap content backwards? ☑

we extracted the beam backwards and could not see significant contribution from the daughter isotopes Cd.

- Overall very successful run, good proof of principle experiment for first in-trap gamma spectroscopy.
- The real experiment will use 7 Si(Li) detectors, hence more angle coverage
- Thanks to the TITAN people, and ISAC delivery and operation.